Uniform (projective) Hyperbolicity or No Hyperbolicity: a Dichotomy for Generic Conservative Maps

نویسندگان

  • Jairo BOCHI
  • Marcelo VIANA
چکیده

– We show that the Lyapunov exponents of volume preserving C1 diffeomorphisms of a compact manifold are continuous at a given diffeomorphism if and only if the Oseledets splitting is either dominated or trivial. It follows that for a C1-residual subset of volume preserving diffeomorphisms the Oseledets splitting is either dominated or trivial. We obtain analogous results in the setting of symplectic diffeomorphisms, where the conclusion is actually stronger: dominated splitting is replaced by partial hyperbolicity. We also obtain versions of these results for continuous cocycles with values in some matrix groups. In the text we give the precise statements of these results and the ideas of the proofs. The complete proofs will appear in [4].  2002 Éditions scientifiques et médicales Elsevier SAS AMS classification: 37C40; 37A35; 7A20 RÉSUMÉ. – Nous montrons que les exposants de Lyapunov des difféomorphismes de classe C1 qui préservent le volume dans une varieté compacte sont continus à un difféomorphisme donné si et seulement si sa décomposition de Oseledets est dominée ou bien triviale. Il s’en suit que pour un sous-ensemble C1-résiduel des difféomorphismes qui préservent le volume, la décomposition de Oseledets est soit dominée soit triviale. Nous obtenons des résultats analogues dans le cadre des difféomorphismes symplectiques où, en fait, les conclusions sont plus fortes : on remplace décomposition dominée par hyperbolicité partielle. De même, nous obtenons des versions de ces résultats pour des cocyles continus à valeurs dans plusieurs groupes de matrices. Dans le texte en anglais nous donnons les énoncés précis de ces résultats, et des idées des preuves. Les démonstrations complètes apparaitront dans [4].  2002 Éditions scientifiques et médicales Elsevier SAS E-mail addresses: [email protected] (J. Bochi), [email protected] (M. Viana). 1 Partially supported by Faperj, CNPq-001/2000, and Pronex-Dynamical Systems. 114 J. BOCHI, M. VIANA / Ann. I. H. Poincaré – AN 19 (2002) 113–123

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic vector fields and hyperbolicity

Using vector fields on logarithmic jet spaces we obtain some new positive results for the logarithmic Kobayashi conjecture about the hyperbolicity of complements of curves in the complex projective plane. We are interested here in the cases where logarithmic irregularity is strictly smaller than the dimension. In this setting, we study the case of a very generic curve with two components of deg...

متن کامل

Uniform Hyperbolicity for Random Maps with Positive Lyapunov Exponents

We consider some general classes of random dynamical systems and show that a priori very weak nonuniform hyperbolicity conditions actually imply uniform hyperbolicity.

متن کامل

The Lyapunov exponents of generic volume preserving and symplectic systems

We show that the integrated Lyapunov exponents of C volume preserving diffeomorphisms are simultaneously continuous at a given diffeomorphism only if the corresponding Oseledets splitting is trivial (all Lyapunov exponents equal to zero) or else dominated (uniform hyperbolicity in the projective bundle) almost everywhere. We deduce a sharp dichotomy for generic volume preserving diffeomorphisms...

متن کامل

Hyperbolicity is Dense in the Real Quadratic Family

It is shown that for non-hyperbolic real quadratic polynomials topological and qua-sisymmetric conjugacy classes are the same. By quasiconformal rigidity, each class has only one representative in the quadratic family, which proves that hyperbolic maps are dense. Statement of the results. Dense Hyperbolicity Theorem In the real quadratic family f a (x) = ax(1 − x) , 0 < a ≤ 4 the mapping f a ha...

متن کامل

COCYCLES OVER PARTIALLY HYPERBOLIC MAPS par

A diffeomorphism f : M → M on a compact manifold M is partially hyperbolic if there exists a continuous, nontrivial Df -invariant splitting TxM = E s x ⊕ E c x ⊕ E u x , x ∈ M of the tangent bundle such that the derivative is a contraction along E and an expansion along E, with uniform rates, and the behavior of Df along the center bundle E is in between its behaviors along E and E, again by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001